In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring

نویسندگان

  • Satoshi Tamazawa
  • Kyosuke Yamamoto
  • Kazuto Takasaki
  • Yasuo Mitani
  • Satoshi Hanada
  • Yoichi Kamagata
  • Hideyuki Tamaki
چکیده

We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metagenomic and Biochemical Characterizations of Sulfur Oxidation Metabolism in Uncultured Large Sausage-Shaped Bacterium in Hot Spring Microbial Mats

So-called "sulfur-turf" microbial mats in sulfide containing hot springs (55-70°C, pH 7.3-8.3) in Japan were dominated by a large sausage-shaped bacterium (LSSB) that is closely related to the genus Sulfurihydrogenibium. Several previous reports proposed that the LSSB would be involved in sulfide oxidation in hot spring. However, the LSSB has not been isolated yet, thus there has been no clear ...

متن کامل

Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes.

The diversity and distribution of a bacterial community from Coffee Pots Hot Spring, a thermal spring in Yellowstone National Park with a temperature range of 39.3 to 74.1 degrees C and pH range of 5.75 to 6.91, were investigated by sequencing cloned PCR products and quantitative PCR (qPCR) of 16S rRNA and metabolic genes. The spring was inhabited by three Aquificae genera--Thermocrinis, Hydrog...

متن کامل

Metagenome-Based Metabolic Reconstruction Reveals the Ecophysiological Function of Epsilonproteobacteria in a Hydrocarbon-Contaminated Sulfidic Aquifer

The population genome of an uncultured bacterium assigned to the Campylobacterales (Epsilonproteobacteria) was reconstructed from a metagenome dataset obtained by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from a sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwater of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacteria...

متن کامل

Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan.

So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bac...

متن کامل

Atmospheric sulfur in Archean komatiite-hosted nickel deposits.

Some of Earth's largest iron-nickel (Fe-Ni) sulfide ore deposits formed during the Archean and early Proterozoic. Establishing the origin of the metals and sulfur in these deposits is critical for understanding their genesis. Here, we present multiple sulfur isotope data implying that the sulfur in Archean komatiite-hosted Fe-Ni sulfide deposits was previously processed through the atmosphere a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2016